OpenSciEd Research Agenda Kickoff

March 31, 2021

Science Strategy

Education Program

Leadership and Teaching to Advance Learning

March 2021

Standards & Curriculum Reform

CORPORATIO OF NEW YOR

Amegic National Reports on Science Education

SCIENCES

The National ENGINEERING Academies of MEDICINE SCIENCE AND ENGINEERIN FOR GRADES 6-12 Science and FOR THE NEXT GENERATION Engineering SCIENCE STANDARDS for Grades PreK-5 Investigation and Design at the NEXT GENERATION Center K-12 SCIENCE 2014 202 201 FDUCATION 9 STANDARDS For States, By States **INSTITUTE FOR** THE NATIONAL ACADEMIES Instructional Materials for the t Generation Science Standard ADVANCED STUDY Advisers to the Nation on Science, Engineering, and Medicine Achieve Seeing Students Learn Scien 201 201 202 2010-2017 2007-2009 2009-201 7 8 0

Investments in Science Education

A nonprofit organization that aims to improve science education through the development and implementation of high-quality, freely available K-12 science instructional materials.

Jim Ryan Executive Director

Matt Krehbiel Professional Learning Director

Sarah Delaney Curriculum Director

3 OpenSciEd Staff Members

NextGen Science Storylines

BOSTON COLLEGE Lynch School of Education and Human Development

Organizations in the Middle School Developers Consortium

The University of Texas at Austin Charles A. Dana Center

University of Colorado Boulder

20 states and D.C. have adopted the NGSS24 states have adopted standards based on the NRC Framework

 States that adopted NGSS made no or minimal changes to NGSS standards
 States that adopted standards based on NRC framework made minimal to moderate changes to NGSS standards
 Source: NGSS NSTA

Field Test Middle School Teachers

Students contributing to field test results

5,800

High-quality middle school science classroom and professional learning materials that prioritize equity

Why do we cometimes se lifferent thing: when looking at the same object

How can containers

keep stuff from

warming up or cooling down

ROpenSciEd

Why does a lot

of hail, rain, or snow

fall at some times

and not others?

ROpenSciEd

R OpenSciEd

How and why

does Earth's

surface change

OpenSciEd

How can we make something new that was not there before? RopenSciEd

CopenSciEd

Why do things sometimes aet damaged when they hit each other? 🚯 OpenSciEd

How can a

sound make

something

🔊 OpenSciEd

How can a magnet

move another object

without touching it?

🚯 OpenSciEc

move?

How do changes in Earth's system impact our communities and what can we do about it? 🛞 OpenSciEd

Remote Learning Adaptations

REMOTE LEARNING ADAPTATIONS NOW AVAILABLE

How can containers keep stuff from warming up or cooling down?

CopenSciEd

MODLE SCHOOL SCIENCE

Visit OpenSciEd.org for more information.

COVID-19 & HEALTH EQUITY SCIENCE UNITS

What can we do to keep our community healthy?

GRADES K-2

GRADES 3-5

MIDDLE SCHOOL

HIGH SCHOOL

Who's Using this Stuff?

20,961 Registered users on website

203,655 Downloaded items from the website

422,197 Views on our YouTube Channel

A Challenge Paper From

negic CORPORATION OF NEW YORK

www.Carnegie.org/Elements

The Elements

of Curriculum-Based Professional Learning

Toward an OpenSciEd Research Community

Jeremy Roschelle Digital Promise

The Research Opportunities We Envision

- **OpenSciEd-enabled** research Research questions in service of science education broadly
- **OpenSciEd-inspired** research *Research questions that drive innovations based on distinctive features*
- **OpenSciEd-partnership** research Research and evaluation questions of mutual interest to you and OpenSciEd developers

The vision: an extended community investigating how to improve science education, centered on an open, modern, high quality curriculum.

Types of Research Studies

• Core research

Building scientific knowledge about learning and teaching

- Design research Exploring improvements, adaptations and extensions
- Implementation research Building capacity and supporting use
- Efficacy research For whom and under what conditions does OpenSciEd work?
- Scale up research

Spread, depth, shift of ownership, sustainability, evolution

What OpenSciEd makes possible

Anchoring in one curriculum can help a community achieving greater impact

- A researcher-practitioner district partnership adapts materials to tackle science equity
- A partnership with a state agency reorganizes the built-in teacher supports to be able to scale up teacher professional development statewide
- A rural STEM consortium develops a toolkit and guidelines for adapting OpenSciEd for differing rural communities nationwide

Why we're excited

OpenSciEd opens up powerful, new research opportunities

Digital Promise's Beliefs

- 1. Important research requires bringing researchers, practitioners, developers, funders, and other voices together
- 2. Individual research projects achieve stronger rigor and relevance when they are part of a community
- 3. Equity is a pressing challenge that we need to tackle together

Call to Action: Join a working group to define what this community should become and what research it should seek to do.

buildbackbetter.gov

PRIORITIES

We aren't just going to rebuild what has worked in the past. This is our opportunity to build back better than ever.

COVID-19

ECONOMIC RECOVERY

RACIAL EQUITY

CLIMATE CHANGE

IMEDITATE PRIORITIES:

COVID-19 Climate Health Care

RACIAL EQUITY

ECONOMY RESTORING AMERICA'S GLOBAL STANDING

buildbackbetter.gov

PRIORITIES

We aren't just going to rebuild what has worked in the past. This is our opportunity to build back better than ever.

COVID-19

ECONOMIC RECOVERY

RACIAL EQUITY

CLIMATE CHANGE

IMEDITATE PRIORITIES:

COVID-19 Climate Health Care

ECONOMY RESTORING AMERICA'S GLOBAL STANDING

All Standards, All Students

A Case for an Equity Research Agenda

- **Equality:** Students are all treated the same and have access to the same resources
- **Equity:** Students all receive the resources they need so they can achieve the same rigorous outcomes

Shifts from Deficits to Assets

Deficit-Oriented Pedagogy

- Linguistically marginalizing
- Linguistic inequity

Asset-Oriented Pedagogy

- Linguistically sustaining
- Linguistic equity

Terms Indicating Shifts from Deficits to Assets

- Limited English proficient students (LEPs) in the No Child Left Behind Act of 2001
- Students from non-English language backgrounds
- Culturally and linguistically diverse students
- English language learners
- English learners (ELs) in the Every Student Succeeds Act of 2015
- Emergent (or emerging) bilinguals
- Multilingual learners
- Term in future federal legislation?

"Doing" Science

The Garbage Unit

What happens to our garbage?

Doing Science, Using Language

What is That Smell?

Modalities

1

Air Particle Smell Particle Particle movement

Talk, text, diagrams, symbols, tables, graphs, etc.

Modalities

Beginning of a lesson cluster

Modalities

End of a lesson cluster

Registers

Students progress from everyday language to specialized language over time

From everyday to specialized registers

Beginning of a lesson cluster Midpoint of a lesson cluster

End of a lesson cluster

Student Assets

EVERYDAY LANGUAGE

HOME LANGUAGE

MULTIMODALITY

SPECIALIZED LANGUAGE

Student Assets

All Standards, All Students

buildbackbetter.gov

PRIORITIES

We aren't just going to rebuild what has worked in the past. This is our opportunity to build back better than ever.

COVID-19

ECONOMIC RECOVERY

RACIAL EQUITY

CLIMATE CHANGE

IMEDITATE PRIORITIES:

COVID-19 Climate Health Care

RACIAL EQUITY

ECONOMY RESTORING AMERICA'S GLOBAL STANDING

Transforming Science Education Through Research-Driven Innovation

It's all a matter of perspective: Starting points for research on OpenSciEd OpenSciEd Research Agenda Plenary

March 31, 2021 Danny Edelson, BSCS Science Learning

OpenSciEd is an innovation

- What does it take to get people to adopt it?
 - Who adopts it?
 - Why do they adopt it?
 - Who doesn't? Why not?
- What does it take to implement it successfully?
 - How do people react to the changes that it requires?
 - How do you get people to buy in to the changes?
 - Who buys in? Who doesn't?
- Does it persist?
 - Is it implemented as designed?
 - How does its use change over time?

OpenSciEd is a Solution to a Challenge

- How do you characterize the challenge?
 - How do you measure "solution"?
- How well does it solve the challenge?
 - Is it better at solving than alternatives?
- Under what conditions does it solve the challenge?
 - For whom?
- At what cost does it solve the challenge?
 - Is it affordable?
 - Is it cost-effective in comparison to alternatives?

OpenSciEd is the translation of a theory of change into an intervention

- Are the assumptions about the system being intervened on valid in the "real world"?
- Is the intervention a faithful translation of the theory of change?
- Is there evidence that the individual conjectures in the theory of change are valid?
- Is there evidence that the conjectures are valid when combined in a complex intervention?

OpenSciEd is a drosophila (model organism) for educational research

- What research should we do on OpenSciEd (v 1.0) to provide a baseline for future research?
- Under what different conditions should we study OpenSciEd?
- How can we use OpenSciEd to study changes in the system over time?
- What variations on OpenSciEd should we study?
 - What conjectures can be explored by studying variations on OpenSciEd?

Things to remember about the OpenSciEd Middle School Program

- It belongs to the world.
- It is a first draft of a program that is meant to grow and branch.
- It is a challenge to do better
 - in some cases by improving it,
 - in some cases by doing something different.
- It will fail
 - if it never gets a fair chance,
 - if people ask too much of it,
 - if it never gets a chance to get better.

Stay connected with **BSCS Science Learning!**

f Find us**i** Follow us**⊘bscsorg**

Sign up for our E-communications at www.bscs.org

Email: dedelson@bscs.org Twitter: DCEdelson

An Initial Logic Model to Guide OpenSciEd Research

Kevin McElhaney Digital Promise

OpenSciEd logic model features

- It's a draft—we will refine it together.
- It's not exhaustive—it highlights what is most distinctive about OpenSciEd.
- It's high-level—a starting point for more detailed models.

An Initial Logic Model to Guide OpenSciEd Research

Kevin McElhaney, Anthony Baker, Carly Chillmon, Zareen Kasad, Babe Liberman, and Jeremy Roschelle

March 31, 2021

Initial Logic Model to Guide OpenSciEd Research

Distinctive Principles

- Coherent to students
- Phenomena-driven
- Development/revision of ideas
- Collaborative knowledge building
- Embody the vision of the Framework

Unique/Key Affordances

- Adaptable
- Freely available
- Extensive and detailed
- Approved

OpenSciEd and Educational Ecosystem

System: Aligns OpenSciEd to system change models to support teacher growth and incentivize the instructional approach. Helps make OpenSciEd *adoptable and sustainable*.

Teacher supports: Enable teachers to implement the OpenSciEd vision and promote teacher growth. Helps make OpenSciEd *learnable and feasible*.

Classroom: Promotes interactions among teachers, students, and materials to achieve desired outcomes. Helps make OpenSciEd *implementable and engaging*.

Desired Outcomes

System

- Teacher capacity
- Students
- Resources and innovations

Classroom: Promotes interactions among teachers, students, and materials to achieve desired outcomes

Components

- Teacher as facilitator
- Driven by student questions
- Lesson-to-lesson enactment
- Consensus building among students
- Problematization
- Opportunities for assessment

Research opportunities

- Characterize and improve classroom feasibility
- Technologies that support implementation
- Equitable and inclusive instructional practices
- Assessment systems
- Improvements over time
- Practical barriers

Teacher supports: Enable teachers to implement the OpenSciEd vision and promote teacher growth

Themes

- Content understanding
- Unit storyline
- Goals for specific lessons, discussions, and activities
- Logistical and materials strategies

Professional learning activities

- Engage in analysis of and reflection on problems of practice
- Highlight navigation and lesson-to-lesson
 enactment
- Immerse teachers in content from the student perspective
- Provide opportunities to collaborate and reflect with peers

Research opportunities

- Adapting teacher supports to meet local needs
- Professional learning communities, coaching, and teacher-to-teacher support
- Supporting equity across classrooms
- How much professional development is needed, and can teachers get it
- Supporting professional development leaders from non-science disciplines

System: Aligns OpenSciEd to system change models to support teacher growth and incentivize the instructional approach

Components

- Collaborations with state officers who can help align to existing systems and effect change in states
- System of OpenSciEd professional development service providers with trained and certified facilitators
- Support for districts to prepare for implementing OpenSciEd

Research opportunities

- Variation across states
- Redirecting resources from curriculum to professional learning
- Engaging families
- Accountability systems
- Strategic partnerships
- Building district capacity

Desired Outcomes

Student

- NGSS-based learning outcomes
- Science engagement
 - Phenomena and problems
 - Classroom
 - Coursetaking
 - Community
- Autonomy
 - Science practices
 - Knowledge building practices
- Outcomes are equitable within and across classrooms

Increased teacher capacity to:

- Implement OpenSciEd successfully and sustainably
- Engage all students equitably
- Sustain a classroom culture of "figuring out"
- Achieve self-efficacy

System

- Deeply committed district adoption
- Broad adoption and infrastructure
- Teacher collaborations
- Shifts in accountability practices
- Teacher professionalism
- Increased resources to teacher professional learning
- Strategic partnerships

Resources and innovations:

- Refined and customized materials
- Technologies
- Assessment systems
- Adoption and implementation models

Research opportunity: District adoption

- How are PD materials adapted? Are they adapted with integrity?
- What teacher-to-teacher supports are successful?
- What shifts occur in district policies / accountability practices?

Stay Connected

- Download the logic model: <u>http://bit.ly/OpenSciEdResearch</u>
- Join the conversation on Twitter: #OpenSciEdResearch
 @DigitalPromise @OpenSciEd
- Email us with questions or ideas: <u>babe@digitalpromise.org</u> <u>kmcelhaney@digitalpromise.org</u>

OpenSciEd Research Agenda Team

Anthony Baker

Carly Chillmon

Zareen Kasad

Babe Liberman

Jeremy Roschelle

Kevin McElhaney

Program Committee

Daniel Damelin

Tamara Heck

Okhee Lee

Ann Rivet

Tina Vo

Thank you!

●

How to Share This Presentation

The information presented in this document is licensed under a <u>Creative Commons</u> <u>Attribution 4.0</u> International License and may be adopted, remixed, or used as inspiration for your own innovation efforts. Follow these <u>attribution guidelines</u> as you use and share this information.